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In this paper we derive conditions under which the constrained Tikhonov-
regularized solutions x, ¢ of an ill-posed linear operator equation Tx =y (ie., x, ¢ is
the minimizing element of the functional [[7x — |2+« |lx]|? in the closed convex
set C) converge to the best-approximate solution of the equation in C with rates
o(a'?) and O(a), respectively.  © 1988 Academic Press, Inc.

1. INTRODUCTION

In many problems arising in practice one has to solve linear operator
equations

Tx=y,

where x and y are elements of real Hilbert spaces X and Y, respectively,
and T is a linear bounded operator from X into Y. By a solution of the
equation Tx =y we always mean the best-approximate solution 7'y, where
T' is the Moore-Penrose inverse of 7. Unfortunately, in general Ty does
not depend continuously on the right-hand side y. A prominent example
for the equation Tx =y is a Fredholm integral equation of the first kind,

fl k(t,5) x(s)ds= (1),  te[0,1],
0

x,ye L*[0,1], ke L*([0, 1]%). Here T' is bounded if and only if k is a
degenerate kernel. Therefore, one has to regularize the equation Tx=y. A
well-known and effective regularization method is Tikhonov-regularization,
where the functional |Tx — y|? + « || x||?, @ >0, is minimized in X (cf, e.g.,
[41).
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Often one knows a priori that the solution Ty is an element of a certain
subset of X, e.g., it is clear that density functions will never assume negative
values. On the other hand, one is often not interested in the solution Ty,
but in the best-approximate solution on a certain set C, which we assume
to be closed and convex in the following. In this situation it is reasonable
to require that the regularized solutions should have the same properties as
the unknown exact solution, e.g., it should be an element of C. Hence, we
regularize the problem

Tx=yAxeC

by minimizing the Tikhonov-functional ||Tx—y|*+« ||x||%, «>0, on C.
We call the solution x, . of this minimum problem “constrained Tikhonov-
regularized solution.”

In Section 2 we deal with convergence and stability of constrained
Tikhonov-regularized solutions. Similar results about convergence and
stability of constrained Tikhonov-regularized solutions have been
developed in [5,6] in a somewhat different way as presented here. In
Section 3 we summarize well-known convergence order results for the
unconstrained case (cf, e.g, [2-4,9]). In Section4 we show that the
condition “Tty e R(T*),” which is sufficient for the convergence rate o(x"/?)
in the unconstrained case, can be replaced by “x,-€ R(P-T*)” in the
constrained case, where P is the metric projector onto C and x, is the
best-approximate solution of Tx =y on C. The main theorem of Section 4
is Theorem 4.2. It is much more difficult to find an analogous condition
to “T'ye R(T*T),” which implies the convergence rate O(a) in the
constrained case, too. The condition “x, € R(P-T*T)” is only necessary
but not sufficient for the convergence rate O(a).

Only if we require further conditions on the set C and x,., we can
guarantee the convergence rate O(a) in the constrained case (see
Theorem 5.13). If, for example, C has a twice continuously Freéchet-
differentiable boundary in a neighbourhood of x, € dC, it is sufficient for
the convergence rate O(a) that the second derivative of the boundary in
Xoc is positive definite and that Px,ce R(PT*TP), where P is the
orthogonal projector onto the hyperplane through the origin, which is
parallel to the tangential plane to 0C in x, . Since the proofs of the results
in Section 5 concerning with the convergence rate O(x) are very technical,
they will be omitted here. For the proofs of the results in Section 5 see [7].

2. CONSTRAINED TIKHONOV-REGULARIZATION

Throughout this paper let X and Y be real Hilbert spaces, : X —> Y a
bounded linear operator; the set of all bounded linear operators on X into
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Y will be denoted by L(X, Y). The inner products and norms in X and Y,
though in general different, will both be denoted by (-,-) and |-,
respectively. We consider the problem of solving

ITx=yAxeC (2.1)

with ye Y and J # C(c X) a convex closed set. We define now what we
mean by “the solution” of (2.1).

DEFINITION 2.1. X, € C is called “C-best-approximate solution” of (2.1)
if

I Txo,c — yll =inf{ || Tx — yll/x € C}
and
I xo.cll =inf{|xl|/x€ C A [|Tx —yll = | Txo -yl }.

Thus, a C-best-approximate solution minimizes the norm of the residual on
C and has minimal norm among all minimizers. In the following
proposition we show that the C-best-approximate solution of (2.1) only
exists for certain elements ye Y.

PROPOSITION 2.2. Let R be the metric projector of Y onto T(C). Then a
C-best-approximate solution exists if and only if Ry € T(C); it is then unique.

Proof. Obviously £e C minimizes |Tx—y| on C if and only if £eC
minimizes |Tx—y||> on C. Since C is closed and convex and since
ITx—y||*> is a convex and Fréchet-differentiable functional, by the
Kuhn-Tucker theory this is equivalent to

xeC and (TX—y,u—Tx)=0 forallue T(C). (2.2)

Since T(C) is closed and convex and since g(u):=|u—y|* is a strictly
convex and Fréchet-differentiable functional with Vg(u)=2(u—y) and
lim,, _, , g(u)= o, Ry is defined as the unique element in 7(C), for which

(Ry—y,u—Ry)=20  forallue T(C) (2.3)

holds. Now it follows with (2.2) and (2.3) that
%€ C minimizes |[Tx—y| onC < XeCATE=Ry. (24)
Let K:={%eC/% minimizes |Tx—y| on C}. Then (24) implies that

K+ @ if and only if Rye T(C). Since |Tx — y|| is a convex functional on
the convex closed set C, K is closed and convex. Therefore, if K # ¢, there
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exists a unique element of minimal norm in K. Together with Definition 2.1
we have: Rye T(C) is equivalent to the existence of a unique C-best-
approximate solution. ||

If C=X, the condition RyeT(C) is equivalent to yeD(T')=
R(T)+ R(T)* and the (X-) best-approximate solution is then given by Ty,
where T is the Moore-Penrose inverse of 7. T is continuous if and only
if R(T) is closed (cf, e.g., [4]). Therefore, the problem of determining the
best-approximate solution T’y is ill-posed (the solution does not depend
continuously on the data), if R(T') is not closed. Hi-posed problems have to
be solved by regularization methods, e.g., Tikhonov-regularization
(cf. [4]). The idea of the Tikhonov-regularization is to approximate Ty
by the minimizing element of the functional

$o(x) = Tx—yI? +a|ix|?,  a>0. (25)

If C(=X) is a closed convex set, we regularize the problem of solving (2.1)
by solving the minimization problem

mirCl &.(x), a>0, (2.6)

where ¢, is defined by (2.5).

We show that the problem (2.6) has a unique solution for all « >0 and
that these solutions converge to the C-best-approximate solution of (2.1)
for a —» 0 if Ry e T(C). Moreover, we show that for all « >0 the solution of
problem (2.6) depends continuously on the data y. Therefore, the problem
of solving (2.6) is well-posed. The existence of a unique solution of (2.6),
the convergence of these solutions to the C-best-approximate solution of
(2.1) for « - 0, and the stability of these solutions for fixed « >0 have been
shown in [5] for the case ye T(C) and in [6] for the case Ry e T(C). Our
proofs differ from those in [5, 6] and have been developed independently.

THEOREM 2.3. Let TeL(X,Y), yeY, a>0, and C(cX) be a convex
closed set. Then the problem (2.6) has a unique solution X, . x, ¢ is also the
unique solution of problem (2.6) with y replaced by Qy, where Q is the
orthogonal projector of Y onto R(T).

Proof. 1t follows with (2.5) that ¢, is a strictly convex and Fréchet-
differentiable  functional with lim,, , , #.(x)=00 and Vg, (x)=
2(T*Tx+ax— T*y) for all «>0. Hence by the Kuhn-Tucker theory,
problem (2.6) has a unique solution x, ., which is characterized as the
unique element in C, such that the variational inequality

(T*Tx,c+ox,c—T*y, h—x,¢)20 foralihe C 2.7)
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holds. Since T* = T*Q, it follows that x, - is also the minimizing element
of ¢, with y replaced by Qy. }

In the next theorem we show that the solution x,. (x>0) of the
problems (2.6) converge to an element in C if and only if Rye T(C) and
that, if Ry e T(C), the limit point equals the C-best-approximate solution
xoc of (2.1). We call x,. “constrained Tikhonov-regularized solution”
of (2.1).

THEOREM 24. Let TeL(X,Y), ye¥.

(a) The constrained Tikhonov-regularized solutions x, . converge to an
element in C for oo — 0 if and only if Rye T(C).

(b) Rye T(C) implies that lim, 4 X, c =Xg ¢

Proof. Let xe C be such that lim, _, 4 x, = X. Then it follows with (2.7)
that (T*Tx—T*y, h—x)=(Tx—y, Th—Tx) >0 for all he C. Since T(C)
is dense in T(C), this implies that (T%—y, u— Tx)=0 for all ueT(C).
Now we obtain with (2.3) that 7% = Ry, which together with x e C implies
that Rye T(C).

Now we assume that Rye T(C). We show that lim, ¢ x, = xo . The
existence of x, . follows from Proposition 2.2. The definition of x, (cf.
Definition 2.1) and (2.4) imply

Txo.c=Ry. (2.8)
Now the definition of Ry énd (2.8) imply that
1Tx—ylt 2| Txoc— I forall xe C. (2.9)
By definition of x, .,

1T%0c = Y17 = [ Txoc = pI* + & [ x,cll?
<N Txoe— 12— 1Txoc—yI* + a lIxg el
Together with (2.9) this implies that

Ix, el < lxocl  foralla>0. (2.10)

With (2.7) (with &= x, ), (2.3) (with u=Tx, o), and (2.8) we get

(T*Tx,ctax,c—T*y, Xoc— X, ) 20
+
(T*y— T*Txoc, Xo,c— xa,C) =0

(T*Tx,c+ax,c— T*Txg ) Xoc— Xac) 20,



TIKHONOV-REGULARIZATION 309
which implies that
[ T(Xqc — X0, Sa(Xyc5 Xo.c — Xuc)- (2.11)

Inequalities (2.10) and (2.11) imply that || 7T(x,c— xoc)ll < (22)"? lxo cll
and hence

lim Tx, = Txoc-. (2.12)

o«—0

Inequality (2.10) also implies that the weak closure of the set {x,|a>0}
is weakly compact and hence (cf. [1]) weakly sequentially compact. Let
(o, >0} be an aribitrary sequence with «, — 0 for n —» co. Then there exist a
subsequence (again denoted by (a,)) and an element » with |lulf < |xq ¢l
and x, ~—u, where “—” denotes weak convergence. Since C is weakly
closed (cf.[1]), ueC. Equalities (2.12) and (2.8) imply that Tu=
Txo = Ry. Since x, is the unique element of minimal norm among all
elements xe C with Tx= Ry, it follows with |u| <|lxocll, ueC, and
Tu = Ry that u=x, . Therefore, we have shown that

X = Xo.c for a—0. (2.13)
With (2.13) and (2.10) we get

“xo‘c”2 = lin%) [(xcr Xo.o)l < limigf llxo.cll + x4 cll
x— ox—

<lims%p I xo,cll - 1Xacll < ||xo,c||2
x —

and hence lim, ¢ [x, ¢l = [xo,cll. Together with (2.13) this implies that

llm xa‘c = xO’C. I

a—0

In the next theorem we show that the constrained Tikhonov-regularized
solution x,  depends Lipschitz-continuously on the data y.

THEOREM 2.5. Let a>0, and let x,- and %,- be the constrained
Tikhonov-regularized solutions for the right-hand sides y and y of Eq. (2.1),
respectively, and let Q be the orthogonal projector onto R(T). Then

12y =)

e = Xucl S— 1 and | T(x,c— X, ) <N1Q(y— )

hold.
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Proof. With (2.7) we get

(T*Txa.(‘+ axa,(‘_ T*y’ ja,C_xu,C) = 0

(T*Txu.C_'- UXy o — T*y, Xgc— Xaqc) 20

(T*T+ad)(xyc— X 0) + T*(Y = y) Xy~ X4c) 20
and hence with T*=T*Q

1T(Xe — X0 + 2 X5, — xu,cllz <@V —y), T(X,c—X,0))
<N = -1 T(Xy 0 — Xo. )

Our assertions follow from the last inequality.

For some further properties of constrained Tikhonov-regularized
solutions see [7, Theorem 1.7].

In the unconstrained case (C = X) it holds that, if there exists an & >0
such that, x;=x, (where x,=(T*T+al) ' T*y is the unconstrained
Tikhonov-regularized solution in X and x,= Ty is the best-approximate
solution of (2.1} in X), then x,=x,=0 for all « >0. The next theorem
shows that an analogous assertion holds for the constrained case.

THEOREM 2.6. Let Rye T(C), R and Q as above. By x. we denote the
unique element of minimal norm in C.
(a) Xxg.c=xc implies that x, = X=X for all a>0.

(b) Let Ry=Qy. If there exists an a>0 such that x; =X ¢, then
Xyo=Xoc=Xc for all «>0.

(c) Let Ry#Qy. If there exists an 4>0 such that x; =X ¢, then
Xpc=Xoc for all 0<a<a.

Proof. The existence and uniqueness of x follow immediately from the
convexity of the closed set C.

(a) With (28) and (23) we obtain that (T*Tx,c—T*y,
h—x4¢) 20 for all he C. It follows from x, = x and the definition of x.
that (xo ¢, h— xo) =0 for all he C. These two inequalities imply that

(T*Txo,c —T*y, h—xoc)+a(xoc, h—x¢)
=(T*Txgc+axgc—T*y, h—xoc) =0

for all #e C and a> 0. Hence the uniqueness of x, - and (2.7) imply that
Xy =Xo,c for all a>0.
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(b) Let a>0 be such that x;.=x,.. Equality (2.8) and Ry=Qy
imply that T*Tx, = T*Ry=T*Qy=T*y. Together with x, - =X, and
(2.7) we obtain that a(xyc, h—xo)=>0 for all he C, which implies that
Xoc = Xc. The rest follows from (a).

(c) Let >0 besuch that x; = x, . Then (2.8) and (2.7) imply that
(Ry—y, Th—Ry)+a(xoc, h—xoc) = (T*Txgc+axoc—T*y, h—X, )
>0 for all heC. This inequality implies that, if e C is such that
(xo,cs h—Xx0c) <0, then (Ry—y, Th—Ry)+alxoc, h—xoc)2(Ry—y,
Th— Ry)+d(xoc, h—x0c) 20 for all O<a<a If heC is such that
(xo.cs h—x0c)=20, then (23) implies that (Ry—y, Th—Ry)+
a(xgcs h—Xx0c) 20 for all «>0. Together with (2.8) we obtain
(Ry—y, Th—Ry)+alxoc, h—xoc) = (T*Txoc+axge—T*p, h—x,()
20 for all he C and 0 <a <& Now the uniqueness of x, - and (2.7) imply
that x,=x, for all O<a<a. |

If instead of the exact right-hand side y in Eq.(2.1) we only know
perturbed data y;eY such that ||Q(y—y;s)ll <4, then the following
theorem shows how a has to be chosen in dependence on 4, that x? » — x, ¢
for -0 holds, where x2. is the constrained Tikhonov-regularized
solution of (2.1) with y replaced by y;.

THEOREM 2.7. Let Rye T(C) and ys€ Y such that ||Q(y—y;)| <9o. If
a(8) is such that lim;_,a(d6)=0 and lim;_,(6%/a(8))=0, then

; s -
lim; o X35, = Xo,c holds.

Proof. With Theorem 2.5 we get

||x2(a),c" Xo.cll € 1Xos).c — Xo,cll + ||x2(5),c — Xo).cll

< X 45).0 — Xo.cll + 6 - a(6) ™ 12,

The rest follows with Theorem 2.4. ||

3. CONVERGENCE RATES FOR THE UNCONSTRAINED CASE

In this section we summarize some well-known convergence results for
unconstrained Tikhonov-regularized solutions so that we can compare
convergence results for constrained Tikhonov-regularized solutions, which
we derive in the next two sections, with those of the unconstrained case.
The proofs of the following assertions can be found, e.g., in [4, 9] (cf. also
[2, 3]). We denote the Tikhonov-regularized solution in X by x, and the
best-approximate solution Tty by x,, if ye D(T"):
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If x,€ R(T*), then |x, — x,| = o(¢"?) and || T(x, — x,)|| = O().
If xo € R(T*T), then |x, — x| = O(a).

Let ve (0, 1); if xoe R((T*T)"), then |[x, — x,| = o(a’) and
o@* ) if v<i
O(a) if vzl

1T, = x0)l = {

Since | x, — xoll = o(«) implies that x, = x,=0 for all « >0, O(«) is (except
for trivial cases) the best possible convergence rate.
Let x¢ be the Tikhonov-regularized solution in X with y replaced by
perturbed data y; (such that |Q(y —ys)l <)
If xo€ R(T*) and a(d) ~ 4, then | x5, — xof = O(8'?).
Let ve(0,1]; if xoeR(T*T)") and a(8)~ 6%+ then
||x2(5) — Xl = 08> @+ 1),

The converse result in the following theorem is slightly more general
than the converse result in [4].

THEOREM 3.1. Let ye D(T') and ve (0, 1]. x,€ R((T*T)") if and only if
I(T*T)' =" (x, — xo)| = O(a); xo € R(T*) if and only if | T(x, — x,)|l = O().

Proof. This assertion is well known in the case where v=1 and T is
compact (see [4]). We now show for ve (0, 1]:

xo€ R((T*T)") if and only if [|(T*T)' ~*(x, — xo)l| = O(x).
“xo€ R(T*)<= | T(x, — xp)|l = O(a)” is proven analogously.

“=": Let u be such that (T*T)’ u=x, and let {E,|A>0} be the
spectral family of T*T; then

(T*T) ~(x,— xo) = (T*T) *[(T*T +od) "' T*T—I|(T*T)" u

C )
= —a(jo md&) u,

<1
which implies that |(T*T)* ~"(x, — xo)ll < a|u|.

“e”: It follows from T*Tx,+oax,—T*y=0 and T*y=T*Tx, for
v< 1 that

X, = (T*T)((Ha)(T*T)' " (x0 — x,)). (3.1

Let ve (0, 1] be such that |[(T*T)' ~"(x, — x,)|| = O(«). Thus, there exists a
constant y > 0 such that

(/) (T*T)' =" (xo — Xo)I < 7. (3.2)
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Let (,>0) be an arbitrary sequence such that «, — 0 for n — oo; since the
set {x € X/|x|| <y} is weakly sequentially compact (cf. [1]), (3.2) implies
that there exist a subsequence (again denoted by («,)) and an element fe X
such that (1/a,)(T*T)' ~*(xo— x,,) —f for n— oo and hence

(T*T)" (1o, (T*T)' ™" (xo = x,,)) >~ (T*T)' f  for n—oc0. (33)

With (3.1), (3.3), and x,— x, for « =0, we obtain x,=(T*T)"f, ie.,
xXo€ R((T*T)"). 1

4. CONDITIONS FOR THE RATE o(a'?) IN THE CONSTRAINED CASE

In this section we show that the condition “x,e R(T*)” that yields the
convergence rate o(a'?) in the unconstrained case (see Section 3) can be
replaced by the condition “x, € R(P-T*)” in the constrained case, where
P is the metric projector onto C, to yield the same result.

Let Rye T(C); we define

N:={xeN(T)*/Pcx=Xoc} (4.1)

and
U:={ueR(T)/PcT*u=xy}. 4.2)
LEMMA 4.1. Let N and U be as above. Then N and U are closed and

convex. If U# (J, then there exists a unique element i of minimal norm in U.
Moreover, T*U < N.

Proof. Let N # &, which is equivalent to x, € P(N(T)*), and let (x,,)
be an arbitrary sequence in N such that x, —» xe N(T)* for n - . Since

xeN<xeN(T)" and (xgc—x, h—xoc) =0 forall he C  (4.3)

holds, we obtain 0< (xoc—X,, h—Xqc) =, o (Xo.c— X, h—xoc) for all
heC, and hence (xo-—x, h—xo)>0 for all he C. Again (4.3) implies
that x e N. Therefore, N is closed.

Let now x,, x,e€ N and A€ [0, 1]; it follows with (4.3) that

(Xo,c— (A%, + (1= ) x5), h—x0.0)

= A (xoc—x1, h—=xXoc)+ (1= 1) (Xo.c — X2, h—X,c) 20
el S——— ——

=0 >0 =0 =0
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for all he C, and hence with (4.3) that (ix, + (1 — 1) x;) € N. Therefore, N
is convex. One proves analogously that U is closed and convex, using

ue U< ueR(T)and (xgc— T*u,h—xo,)20forall heC  (4.4)

instead of (4.3). If U+ &, the existence and uniqueness of an element
i _of minimal norm in U follow from the convexity of the closed set U.
T*Uc N follows immediately from the definitions of N and U, since
R(T*) = N(T)*. |

Now we can prove our first result about convergence rates:

THEOREM 4.2. Let Rye T(C).

(@) If xoc € R(PcT*), then |x,c — Xocl = O(@'?)  and
1T(xpc — Xoc)l =O0(a). If in addition Qy = Ry we even obtain
[Xa2.c = Xo.cll = o(a'?).

(b) Let Qy=Ry; |T(x,c— xoc)ll = O(a) implies  that
Xoc€R(P-T*).

Proof. (a) It follows with (2.7) (with h=x, (), (2.3) (with u=Tx, (),
(2.8), and (4.4) (with &= x, ) that

(T*Tx,c+ax,c—T*y, Xoc—X,c) 20
(T*y —~T*Txgc, Xoc— X0c)) 20 ) +
a(T*u— Xo,c> Xo.0— Xac) 20

((T*T+ ad)(x, c —Xo.c) +aT*d, Xoc— X, )20,

where @€ U is the unique element of minimal norm in U (see Lemma 4.1).
The last inequality implies that

I T(x4,c = Xo.0)ll +a %2, — Xo.cll 2<a(d, T(xo,c — Xac))
<o full - 1 T(xgc — X0 (4.5)
It follows immediately from (4.5) that

1 T(x,,c ~ Xo,c)l <o llul (4.6)
and
x4 c— Xo,cll € a'? [l 4.7

hold. Let now Qy= Ry. Estimate (4.6) implies that ||T(x,c— xoc)/el <
lall. Let (a,>0) be an arbitrary sequence with o, -0 for n — co. Then



TIKHONOV-REGULARIZATION 315

there exist a subsequence (again denoted by («,)) and an element g, € R(T)
such that ||goll < |l@|| and T(xqc— x,,c)/®, — g, for n— co. Together with
(2.7), Ry=Qy, and (2.8), which imply that T*y=T*Ry=T*Tx, ., we
obtain

T(xoc—

0< —T*
<er,,,C o

Xy, c)
e h “‘xa,,,C> . (xo,c — T*go, h—Xo.c)

n

for all he C and hence (x¢— T*go, h— x0) =0 for all he C. Now (4.4)
implies that go€ U. [ g,ll < |4l and the uniqueness of # imply that g,=a.
Therefore, we have shown

T(xgc—X,c) -

- —u for a-0. (4.8)
With (4.6) and (4.8) we get

Jal? = lim ‘(u M)’

o

e T(xgc—x
< | - liminf _(__(’_E_“C)
a—0

T(xo,c ~ Xyc)

< il - limsup < llal?

and hence lim, ¢ | T(xo ¢ — X, ¢)/atll = Ji|l. Together with (4.8) this implies

T -
_(XL‘Z%'C_) Ny for a-0. (4.9)

Rewriting (4.5) we get
& | xy 0 — xo,c||2 Lald, T(xoc—x,c))— [ T(xgc— xa,c)llz

and hence

T(xo.c_xa,c)

||xu,c_x0,c||2<<'2_ > T(xO,C—xa,C))

_ T(xge—X,¢)
<la-Tooc=Xad)| e o 1

With (4.6) and (4.9) this implies that ||x, - — xq ¢l = o(¢'/?).

(b) If|T(x,c—xoc)| = O(a), then there exists a constant y >0 such
that | T(x,c—xoc)/2 <y. Now it follows analogously to (a) that an
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arbitrary sequence («, > 0) with a, — 0 for n — oo has a subsequence (again
denoted by (a,)) such that T(x,c—x,, c)/a,—~go€U for n— 0, ie,
PcT*go=xy, so that x, € R(P-T*). |

Remark 4.3. 1If the operator T is injective and Qy = Ry, which implies
that x,=x,=T"y, then the condition “x,.=x,€ R(P-T*)” for the
convergence rate o(x'?) in the constrained case is weaker than the
condition “x,€ R(T*)” in the unconstrained case, since there exist
examples (see, e.g., [7, Example 3.4]) where x,¢ R(T*), |x,— xoll #
0(a'?), but xo-=x,6 R(P-T*), which implies (see Theorem 4.2) that
[ xo.c— Xoll =0(x'?). This means that in this case the constrained
Tikhonov-regularized solution converges faster than the unconstrained
Tikhonov-regularized solution. Obviously, the converse implication
“x0€ R(T*)=>x,€ R(P-T*)” always holds, if x,e C.

It is also possible to show that the condition “x,€ R((T*T)") (v<4)” for
the convergence rate o(a”) in the unconstrained case (see Section 3) can be
replaced by an analogous condition for x, . in the constrained case (see

[7, pp. 32-39]).

5. CONDITIONS FOR THE RATE O(a) IN THE CONSTRAINED CASE

In this section we summarize the most important results of [7]. Since
the proofs of these results are rather involved, they will be omitted here; for
the proofs see [7].

The first result in this section shows that we can use the results about
convergence rates of the unconstrained case, if xo,CeC‘ (which is not
surprising): ’

PrOPOSITION S5.1. Let RyeT(C) and xoc€C. Then xoc=x, and
Xy =X, for o> 0 sufficiently small.

Proof. See [7, Proposition 4.1]. |

In the following we suppose that x, € 0C, which holds, e.g., if xq c# x,
or Oy # Ry.

In the unconstrained case, O(«) is (except for trivial cases, cf. Section 3)
the best possible convergence rate. This also holds in the constrained case
(at least if Ry=Qy):

THEOREM 5.2. Let Ry=QyeT(C) and |x,c—Xocll=o0(a);, then
Xgc=Xoc=Xc for all >0, where x. is the unique element of minimal
norm in C.

Proof. See [7, Theorem4.2]. |}
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We have seen in Section 4 that the condition “x,e€ R(T*)” for the
convergence rate o(a'/?) in the unconstrained case can be replaced by the
condition “x, € R(P-T*)” in the constrained case to yield the same result.
The condition “x,e R(T*T)” for the convergence rate O(a) in the
unconstrained case cannot just be replaced by “x, € R(P-T*T)” as one
would expect (for an example where xo c€ R(P-T*T), but |x,— xg ¢l #
O(a), see [7, Example 4.10]). Nevertheless, the next theorem shows that
this condition is necessary for the convergence rate O(x), if Qy = Ry.

THEOREM 5.3. Let Qy = Ry € T(C), Xoc € 0C, Xx¢c # X¢c, and
%5 — Xo.cll -O(a) Then U# & and uER(TP) holds, where U is defined
by (4.2) and P is the orthogonal projector onto L :={heX/(f,,h)}=0,
where

xo’c“ T*ﬁ
fo= llx0,c ~ T*ul
0 lf‘ xO,C= T*IZ.

if xoc#*T*u

Hence x, € R(P-T*TP). Especially, Xo,c € R(P-T*T).
Proof. See [7, Theorem 4.5]. |}

We have seen in Remark 4.3 that, if T is injective and x,€C, the
constrained Tikhonov-regularized solutions always converge with the rate
o(a'?), if the unconstrained Tikhonov regularized solutions converge with
this rate. An analogous assertion does not hold for the rate O(a), even if T
is injective and x, € C, because it is on the one hand possible that only the
unconstrained Tikhonov-regularized solutions converge with the rate O(a),
and on the other hand it is possible that only the constrained Tikhonov-
regularized solutions converge with the rate O(a) (see [7, Example 4.7]).

If 0C can be described by a linear manifold in a neighbourhood of x, ,
we can use the convergence results from the “unconstrained theory” (see
Section 3) to obtain the following result:

THEOREM 54. Let Rye T(C) and xo € 0C. Let V be a linear subspace
of X,ze V*, and £>0 such that (z+ V)" U, (xoc)=0C U, (xoc), where
U, (xo¢) := {x€ X/|x—xocll <&}. For a>0 sufficiently small let x, e 0C.
Then

aC_ (PT*TP+O(I) ! PT*TPXOC and P(xa‘c—xO,C)=xa‘c—xO‘C

Jor a>0 sufficiently small, where P is the orthogonal projector onto V.
Moreover, Pxy & R(PT*TP) is equivalent to ||x,— xocl = O(a).

Proof. See [7, Theorem 4.8]. |

640/53/3-6
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Theorem 5.4 shows that, if L is a hyperplane and x, ; are the constrained
regularized solutions in this hyperplane, we can use the results of Section 3
to obtain results about convergence rates. Therefore, we now establish
conditions under which the inequality

[ X5,c = Xo.cl <c- x5, = Xo.cl (5.1)

holds for some ¢>0, where L :={heX/(T*(Ry—Qy), h—x,c)=0},
if Qy#Ry, and L:={heX/(xqc—T*a, h—x,c)=0}, if Qy=Ry,
Xo.c € R(P-T*), and x,# T*u (see [7, Lemma 4.16]). The main effort in
the proofs of the results in this section is contained in the derivation of
sufficient conditions for (5.1) to hold. Using (5.1) and Theorem 5.4 one can
obtain the convergence rate O(«) for a larger class of convex sets C. For
the (lengthy) details see [7, Lemmata 4.12-4.16].

For xe 0C let S(x):={fe X/(f,h—x)>=0for all he C and || f] =1} be
the subgradient of 8C in x; and let

T*(Ry—Qy)

if Ry#Qy
VIR =)l y#e
0= ) xoo— TH*u . « .-
—'————*—_— if Ry=Qy, xQ,CER(PCT ), and xo‘c?é T*i,
llxo.c = T*ull

and x,.# X, for all «>0. Moreover, let either Ry #Qy or Ry=Qy,
Xoc€R(P-T*) and x,# T*i. Then the sufficient conditions for (5.1)
read as follows:

“There exist constants ¢ > 0 and ¢ > 0 such that
I(fn _fO’ XO,C - xn)l
“fn —fO” ) ||x0,C - xn”

withx, =, _ o Xo.¢, Xoc #X,€0C N U, (xy¢), and

fn _’naoofo’fo ;éf,,eS(x,,)”

=c for all sequences (x,), (f,), (5.2)

and

“There exist constants ¢ > 0 and ¢ > 0 such that
I fos Xo,c = X,)l
If5 ~Soll - 1xo.c — Xall
with x, =, o Xo.c;, Xo.c #X,€ 0C N U, (xoc), and

fn _bn—>oof0af0 ;éanS(xn)’”

respectively. Since (f,, Xoc—x,)2=0 and (f5, x,—Xoc)=0 (note that
fn € S(xn) al’ld fO € S(XO,C))a (fn —fO, xO,C—xn) =(fnsx0,C_xn) +

=c for all sequences (x,,), (/,) (5.3)
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(fo, Xn~X0.¢) 2 (fu, Xoc— X,) 20; hence [(f,—fo, Xo,c— X )| = (fu—fos
xO,C_ xn) 2 (fna xO,C_xn) = |(fn9 xO,C_xn)l' Thls 1Inphes that

(53)= (5.2).

If C is twice continuously Fréchet-differentiable in a neighborhood of x, .,
then there exists a very simple condition which implies (5.3).

LEmMMA 5.5. Let RyeT(C) and let éC be twice continuously Fréchet-
differentiable in a neighbourhood of x, ., i.e., there exist ¢>0, ¢>0, and a
functional F: U, (xoc)— R such that 0CnU,(xoc)={xeU, (xoc)/
F(x)=c} and F is twice continuously Fréchet-differentiable. If F"(xc) is
positive definite, then the conditions (5.2) and (5.3) hold. (By F'"(x,c) is
positive definite we mean that there exists a constant y>0 such that
F"(xoc)z, 2) 2y ||2||* for all ze X))

Proof. See [7, Lemma4.18]. ||

Now we obtain the main result of this section.

THEOREM 5.6. Let Rye T(C) and let one of the following four conditions
be fulfilled.
(i) Ry#Qy, xoceN(T)", and Qye R(T)

(i) Ry=Qp, xoc#xq, and xo € R(P-T*) and C fulfills

(i) Ry=0Qy, xoc=%X0€ER(P:T*), xoc# T*u, \ condition (5.2)
and fye R(T*T)

(iv) Ry=0Qy, xoc=x0€R(P-T*), xoc# T*i, and fo ¢ R(T*T) and
C fulfills condition (5.3).

(If the conditions of Lemma 5.§ are fulfilled, (5.2) and (5.3) hold.) Let P be
the orthogonal projector onto L := {he X/(f,, h)=0}, where

T*(Ry—Qy) , ,
p m in the case (i)
0 =
Xoc— T*a ) o
IXoc— T %] in the cases (ii), (iii), (iv).

Then F’xoyceR(FT*TP') implies that
Xa,c — Xo.cll = O(a).
Proof. See [7, Theorem 4.19].

If we do not know the data y exactly, but elements ys;e Y such that
1Q(y —ys)l <0, then we can obtain results about convergence rates in



320 A. NEUBAUER

dependence on & analogously to the unconstrained case (see Section 3),
using Theorem 2.5, Theorem 4.2, Theorem 5.4, and Theorem 5.6 (see [7,
Theorem 4.207).

Note that in this paper we treat the infinite-dimensional theory of
constrained regularization. For numerial computations one has to
approximate the problem of solving (2.6) by a sequence of finite-dimen-
sional problems. For this and numerical results see [8].
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