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In this paper we derive conditions under which the constrained Tikhonov
regularized solutions x,.c of an ill-posed linear operator equation Tx =y (Le., x,.c is
the minimizing element of the functional II Tx - Yl12 + oc IIxl1 2 in the closed convex
set C) converge to the best-approximate solution of the equation in C with rates
o(OC I/2) and O(oc), respectively. © 1988 Academic Press, Inc,

1. INTRODUCTION

In many problems arising in practice one has to solve linear operator
equations

Tx=y,

where x and yare elements of real Hilbert spaces X and Y, respectively,
and T is a linear bounded operator from X into Y. By a solution of the
equation Tx = y we always mean the best-approximate solution Tty, where
Tt is the Moore-Penrose inverse of T. Unfortunately, in general Tty does
not depend continuously on the right-hand side y. A prominent example
for the equation Tx = y is a Fredholm integral equation of the first kind,

J: k(t, s) x(s) ds = y(t),

x,YEL2 [0, 1], kEL2([0, 1]2). Here Tt is bounded if and only if k is a
degenerate kernel. Therefore, one has to regularize the equation Tx = y. A
well-known and effective regularization method is Tikhonov-regularization,
where the functional II Tx - yl!2 + C( I!x1!2, C( > 0, is minimized in X (cf., e.g.,
[4]).
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Often one knows a priori that the solution Tty is an element of a certain
subset of X, e.g., it is clear that density functions will never assume negative
values. On the other hand, one is often not interested in the solution Tty,
but in the best-approximate solution on a certain set C, which we assume
to be closed and convex in the following. In this situation it is reasonable
to require that the regularized solutions should have the same properties as
the unknown exact solution, e.g., it should be an element of C. Hence, we
regularize the problem

Tx=y 1\ XEC

by minimizing the Tikhonov-functional II Tx - yl12 + 0: Ilx11 2
, 0: > 0, on C.

We call the solution x~.c of this minimum problem "constrained Tikhonov
regularized solution."

In Section 2 we deal with convergence and stability of constrained
Tikhonov-regularized solutions. Similar results about convergence and
stability of constrained Tikhonov-regularized solutions have been
developed in [5,6] in a somewhat different way as presented here. In
Section 3 we summarize well-known convergence order results for the
unconstrained case (cr., e.g., [2-4,9]). In Section 4 we show that the
condition "Tty E R( T *)," which is sufficient for the convergence rate 0(0: 1(2)

in the unconstrained case, can be replaced by "Xo.cER(PcT*)" in the
constrained case, where Pc is the metric projector onto C and xo,c is the
best-approximate solution of Tx = y on C. The main theorem of Section 4
is Theorem 4.2. It is much more difficult to find an analogous condition
to "Tty E R(T*T)," which implies the convergence rate 0(0:) in the
constrained case, too. The condition "xo,c E R(Pc T* T)" is only necessary
but not sufficient for the convergence rate 0(0:).

Only if we require further conditions on the set C and xo,c, we can
guarantee the convergence rate 0(0:) in the constrained case (see
Theorem 5.13). If, for example, C has a twice continuously Frechet
differentiable boundary in a neighbourhood of xo,c E ac, it is sufficient for
the convergence rate 0(0:) that the second derivative of the boundary in
Xoc is positive definite and that PXoc E R(PT* TP), where P is the. ,
orthogonal projector onto the hyperplane through the origin, which is
parallel to the tangential plane to ac in xo,c. Since the proofs of the results
in Section 5 concerning with the convergence rate 0(0:) are very technical,
they will be omitted here. For the proofs of the results in Section 5 see [7].

2. CONSTRAINED TIKHONOV-REGULARIZATION

Throughout this paper let X and Y be real Hilbert spaces, T: X ...... Y a
bounded linear operator; the set of all bounded linear operators on X into
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Y will be denoted by L(X, Y). The inner products and norms in X and Y,
though in general different, will both be denoted by (".) and 11·11,
respectively. We consider the problem of solving

Tx=y /\ XEC (2.1 )

with y E Yand 0:j:. C( eX) a convex closed set. We define now what we
mean by "the solution" of (2.1).

DEFINITION 2.1. xo,c E C is called "C-best-approximate solution" of (2.1)
if

II Txo,c - yll = inf{ II Tx - YII/x E C}

and

Ilxo,c11 =inf{llxll/xEC /\ IITx-YII = IITxo,c-YII}.

Thus, a C-best-approximate solution minimizes the norm of the residual on
C and has minimal norm among all minimizers. In the following
proposition we show that the C-best-approximate solution of (2.1) only
exists for certain elements Y E Y.

PROPOSITION 2.2. Let R be the metric projector of Y onto T( C). Then a
C-best-approximate solution exists if and only if Ry E T( C); it is then unique.

Proof Obviously x E C minimizes II Tx - yll on C if and only if x E C
minimizes II Tx - Yl12 on C. Since C is closed and convex and since
II Tx - y 11 2 is a convex and Frechet-differentiable functional, by the
Kuhn-Tucker theory this is equivalent to

and (TX- y, u- Tx)~O for all U E T( C). (2.2)

Since T(C) is closed and convex and since g(u):= Ilu- YI1 2 is a strictly
convex and Frechet-differentiable functional with Vg(u) = 2(u - y) and
lim llull ~ co g(u) = 00, Ry is defined as the unique element in T( C), for which

(Ry- y, u-Ry)~O for all u E T( C) (2.3)

holds. Now it follows with (2.2) and (2.3) that

x E C minimizes II Tx - y lion C <::> XE C /\ Tx = Ry, (2.4)

Let K:= {XEC/X minimizes IITx-yll on C}. Then (2.4) implies that
K:j:. 0 if and only if Ry E T( C). Since II Tx - yll is a convex functional on
the convex closed set C, K is closed and convex. Therefore, if K", 0, there
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exists a unique element of minimal norm in K. Together with Definition 2.1
we have: Ry E T( C) is equivalent to the existence of a unique C-best
approximate solution. I

If C = X, the condition Ry E T( C) is equivalent to y E D( Tt) =
R(T) +R(T)l. and the (X-) best-approximate solution is then given by Tty,
where Tt is the Moore-Penrose inverse of T. Tt is continuous if and only
if R(T) is closed (cf., e.g., [4]). Therefore, the problem of determining the
best-approximate solution Tty is ill-posed (the solution does not depend
continuously on the data), if R(T) is not closed. Ill-posed problems have to
be solved by regularization methods, e.g., Tikhonov-regularization
(cf. [4]). The idea of the Tikhonov-regularization is to approximate Tty
by the minimizing element of the functional

a>O. (2.5)

If C( c X) is a closed convex set, we regularize the problem of solving (2.1)
by solving the minimization problem

min t/>~(x),
XEC

a>O, (2.6)

where t/>~ is defined by (2.5).
We show that the problem (2.6) has a unique solution for all a> 0 and

that these solutions converge to the C-best-approximate solution of (2.1)
for a~ 0 if Ry E T( C). Moreover, we show that for all a > 0 the solution of
problem (2.6) depends continuously on the data y. Therefore, the problem
of solving (2.6) is well-posed. The existence of a unique solution of (2.6),
the convergence of these solutions to the C-best-approximate solution of
(2.1) for a --+ 0, and the stability of these solutions for fixed a> 0 have been
shown in [5] for the case y E T( C) and in [6] for the case Ry E T(C). Our
proofs differ from those in [5,6] and have been developed independently.

THEOREM 2.3. Let T E L(X, Y), y E Y, a> 0, and C( c X) be a convex
closed set. Then the problem (2.6) has a unique solution x~.c' x~,c is also the
unique solution of problem (2.6) with y replaced by Qy, where Q is the
orthogonal projector of Y onto R(T).

Proof It follows with (2.5) that t/>~ is a strictly convex and Frechet
differentiable functional with lim llxlI -+ 00 t/>~(x) = 00 and Vt/>~(x) =
2(T*Tx+cxx-T*y) for all a>O. Hence by the Kuhn-Tucker theory,
problem (2.6) has a unique solution x~,c, which is characterized as the
unique element in C, such that the variational inequality

(T*Tx~.c+ax~,c- T*y, h-x~.d~O for all hE C (2.7)
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holds. Since T* = T*Q, it follows that x~,c is also the minimizing element
of ¢J~ with y replaced by Qy. I

In the next theorem we show that the solution x~,c (a> 0) of the
problems (2.6) converge to an element in C if and only if RYE T(C) and
that, if Ry E T( C), the limit point equals the C-best-approximate solution
xo,c of (2.1). We call x~.c "constrained Tikhonov-regularized solution"
of (2.1).

THEOREM 2.4. Let TEL(X, Y), yE Y.

(a) The constrained Tikhonov-regularized solutions x~,c converge to an
element in C for a -+ 0 if and only if Ry E T( C).

(b) Ry E T( C) implies that lim~ ~ 0 x~,c = Xo,C'

Proof Let xE C be such that limHo x~,c = X. Then it follows with (2.7)
that (T*TX - T*y, h - x) = (Tx - y, Th - Tx) ~ 0 for all hE C. Since T(C)
is dense in T( C), this implies that (Tx - y, u - Tx) ~ 0 for all u E T( C).
Now we obtain with (2.3) that Tx = Ry, which together with x E C implies
that Ry E T( C).

Now we assume that Ry E T( C). We show that lim~ ~ 0 x~,c =xo,c. The
existence of xo,c follows from Proposition 2.2. The definition of xo,c (cr.
Definition 2.1) and (2.4) imply

Txo.c=Ry.

Now the definition of Ry and (2.8) imply that

(2.8)

II Tx - yll ~ II Txo,c - yll

By definition of x~,c,

for all XE C. (2.9)

II Tx~,c - Yl12 - II Txo,c - Yl12 + a Ilx~,c112

::::; II Txo.c - Yl12 - II Txo,c - Yl12 + a Ilxo,c112.

Together with (2.9) this implies that

Ilx~,c11 ::::; Ilxo,cll for all a> O. (2.10)

With (2.7) (with h =xo,d, (2.3) (with u = TX~,d, and (2.8) we get

(T*Tx~,c+ax~,c- T*y, xo,c-x~,d~OI +
(T*y-T*Txo,c,xo,c-x~,d~O ~
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(2.11 )

Inequalities (2.10) and (2.11) imply that IIT(x",c-xo,dll,,;; (21X)1/21Ixo,ell
and hence

lim Tx",c = Txo,c.
,,~o

(2.12)

Inequality (2.10) also implies that the weak closure of the set {x".c IIX > O}
is weakly compact and hence (cf. [1]) weakly sequentially compact. Let
(IXn> 0) be an aribitrary sequence with IXn -+ 0 for n -+ 00. Then there exist a
subsequence (again denoted by (IXn)) and an element u with Ilull";; Ilxo,c11
and xrxn,c ->0. u, where "->0." denotes weak convergence. Since C is weakly
closed (cf. [1]), uEC. Equalities (2.12) and (2.8) imply that Tu=
Txo,c = Ry. Since xo,c is the unique element of minimal norm among all
elements x EC with Tx = Ry, it follows with Ilull";; Ilxo,ell, u EC, and
Tu = Ry that u = xo,c. Therefore, we have shown that

for IX -+ O. (2.13 )

With (2.13) and (2.10) we get

Ilxoell 2= lim I(x" c, X oc)1 ,,;; liminf Ilxo ell . Ilx" ell
• IX_O •.• IX_O ' •

and hence lim,,~o Ilx",ell = Ilxo,ell. Together with (2.13) this implies that

lim x"'c = xo,c· I
,,~o

In the next theorem we show that the constrained Tikhonov-regularized
solution x",c depends Lipschitz-continuously on the data y.

THEOREM 2.5. Let IX > 0, and let x",c and X",C be the constrained
Tikhonov-regularized solutions for the right-hand sides y and ji of Eq. (2.1),
respectively, and let Q be the orthogonal projector onto R(T). Then

and

hold.
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Proof With (2.7) we get

(T* Tx~.c+ IXX~,c - T*y, X~,c - x~,d ~ 0 l
(T*Tx~,c+IXx~.c-T*y,x~,c-x~.d~O +

« T* T + IXI)(x~,c - x~,d + T*(Y - y), X~.c - x~.d ~ 0

and hence with T* = T*Q

IIT(x~,c-x~,dI12+ IX Ilx~.c-x~.c112 ~ (Q(Y- y), T(x~.c-x~.c))

~ IIQ(y- Y)II·IIT(x~.c-x~,dll·

Our assertions follow from the last inequality. I

For some further properties of constrained Tikhonov-regularized
solutions see [7, Theorem 1.7].

In the unconstrained case (C = X) it holds that, if there exists an a> 0
such that, X~=Xo (where x~=(T*T+IXI)-l T*y is the unconstrained
Tikhonov-regularized solution in X and X o= Tty is the best-approximate
solution of (2.1) in X), then x~ = Xo = 0 for all IX> O. The next theorem
shows that an analogous assertion holds for the constrained case.

THEOREM 2.6. Let Ry E T( C), Rand Q as above. By Xc we denote the
unique element of minimal norm in C.

(a) xO,c=xc implies that x~,c=xo,c=xcforall a>O.

(b) Let Ry = Qy. If there exists an a> 0 such that x~.c = xO,c, then
X~,c = Xo.c = Xc for all IX> O.

(c) Let Ry "" Qy. If there exists an a> 0 such that x~.c = xo.c , then
X~,c = XO,c for all 0 < IX ~ a.

Proof The existence and uniqueness of Xc follow immediately from the
convexity of the closed set C.

(a) With (2.8) and (2.3) we obtain that (T*Txo.c- T*y,
h - xo.c) ~ 0 for all hE C. It follows from Xo.c = Xc and the definition of Xc
that (xo,c, h - xo,c) ~ 0 for all hE C. These two inequalities imply that

(T*Txo,c- T*y, h -xo,c) + IX(Xo.c , h - xo.d

= (T*Txo.c + IXXo,c- T*y, h -xo,d ~ 0

for all hE C and IX> O. Hence the uniqueness of X~.c and (2.7) imply that
x~,c = xo,c for all (X> O.
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(b) Let a> 0 be such that x~,c = xo,c' Equality (2,8) and Ry = Qy
imply that T*Txo,c = T* Ry = T*Qy = T*y, Together with x~,c = xo,c and
(2,7) we obtain that a(xo,c, h - xo,c);:~ 0 for all hE C, which implies that
xo.c=xc ' The rest follows from (a).

(c) Let a>O be such that x~,c=xo,c'Then (2.8) and (2.7) imply that
(Ry- y, Th- Ry) + a(xo,c, h -xo,c) = (T*Txo,c +axo,c- T*y, h -xo,d
~ 0 for all hE C. This inequality implies that, if hE C is such that
(xo,c, h - xo,c) < 0, then (Ry - y, Th - Ry) + a(xo,c, h - xo,c) ~ (Ry - y,
Th - Ry) + a(xo,c, h - xo,d ~ 0 for all 0 < a ~ a. If hE C is such that
(xo,c, h - xo,d ~ 0, then (2.3) implies that (Ry - y, Th - Ry) +
a(xo,c, h - xo,c) ~ 0 for all a> O. Together with (2.8) we obtain
(Ry- y, Th - Ry) + a(xo,c, h - xo,d = (T*Txo,c+ axo,c- T*y, h -xo,d
~ 0 for all hE C and 0 < a ~ a. Now the uniqueness of xa,c and (2.7) imply
that xa,c = Xo,c for all 0 < a ~ a. I

If instead of the exact right-hand side y in Eq. (2.1) we only know
perturbed data YJE Y such that IIQ(y-YJ)11 ~b, then the following
theorem shows how a has to be chosen in dependence on 15, that x~,c -+ xo,c
for 15 -+ 0 holds, where x~,c is the constrained Tikhonov-regularized
solution of (2.1) with y replaced by YJ.

THEOREM 2.7. Let RyET(C) and hEY such that IIQ(Y-YJ)II~b. If
a(b) is such that limJ ~ 0 a(b) = 0 and limJ ~ 0 (15 2/a( 15)) = 0, then
limJ ~ 0 x~(J),C = xo,c holds.

Proof With Theorem 2.5 we get

Ilx~(J),C - xo,cll ~ Ilxa(J).c - xo,cll + Ilx~(J),C - xa(J).cll

~ Ilxa(J),C - xo,cll +b. a(b)-1/2.

The rest follows with Theorem 2.4. I

3. CONVERGENCE RATES FOR THE UNCONSTRAINED CASE

In this section we summarize some well-known convergence results for
unconstrained Tikhonov-regularized solutions so that we can compare
convergence results for constrained Tikhonov-regularized solutions, which
we derive in the I).ext two sections, with those of the unconstrained case.
The proofs of the following assertions can be found, e.g., in [4,9] (cf. also
[2,3]). We denote the Tikhonov-regularized solution in X by X a and the
best-approximate solution Tty by xo, if y ED( Tt):
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If xoER(T*), then IIx~-xoll =o(a l
/
2) and IIT(x~-xo)ll =O(a).

If XoE R(T*T), then Ilx~ - xoll = O(a).

Let VE(O, 1); if xoER((T*Tn, then Ilx~-xoll =o(aV) and

{
o(a v + 1/2) if v <!

IIT(x~-xo)ll= O(a) if v~!.

Since Ilx~-xoll =o(a) implies that x~=xo=O for all a>O, O(a) is (except
for trivial cases) the best possible convergence rate.

Let x~ be the Tikhonov-regularized solution in X with y replaced by
perturbed data Yo (such that IIQ(y - Yo)11 :::; <5):

If xoER(T*) and a(<5)-<5, then Ilx~(o)-xoll =0(<51/2).

Let v E (0,1]; if Xo E R«(T*Tn and a(<5) - <5 2/(2v+ I), then
Ilx~(o) - xoll = 0(<5 2v/(2v+ I».

The converse result in the following theorem is slightly more general
than the converse result in [4].

THEOREM 3.1. Let YED(Tt) and vE (0,1]. Xo E R«(T*Tn if and only if
II(T*T)I- v(x~ - xo)11 = O(a); XoE R(T*) if and only if II T(x~ - xo)ll = O(a).

Proof This assertion is well known in the case where v= 1 and T is
compact (see [4]). We now show for v E (0, 1]:

XoE R((T*Tn if and only if II(T*T)I-v(X~ - xo)11 = O(a).

"xo E R( T*) <:> II T(x~ - xo) II =O(a)" is proven analogously.

"=>": Let u be such that (T*T)' U=Xo and let {E" I A.~O} be the
spectral family of T* T; then

(T*T)I- V(x~ - xo) = (T*T)I- V[(T*T + aI)-1 T*T - I](T*T)' u

= -a (tOO a ~ A. dE,,) u,

,;;1

which implies that II(T*T)I-V(X~-xo)11:::;lXllull·
"<=": It follows from T*Tx~ + ax~ - T*y =°and T*y = T*Txo for

v:::; 1 that

(3.1 )

Let vE (0, 1] be such that II(T*T)l- V(x~ - xo)1I = O(a). Thus, there exists a
constant ')i ~°such that

(3.2)
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Let (oc n > 0) be an arbitrary sequence such that OCn -+ 0 for n -+ 00; since the
set {xEX/llxll ~')'} is weakly sequentially compact (cf. [1]), (3.2) implies
that there exist a subsequence (again denoted by (oc n )) and an elementfE X
such that (l/ocn)(T*T)I-V(xo-xaJ~fforn-+ 00 and hence

for n -+ 00. (3.3)

With (3.1), (3.3), and Xa-+Xo for oc-+O, we obtain xo=(T*T)"J, i.e.,
xoER((T*T)"). I

4. CONDITIONS FOR THE RATE 0(OC
I
/
2

) IN THE CONSTRAINED CASE

In this section we show that the condition "xo ER( T*)" that yields the
convergence rate 0(OC

I
/
2

) in the unconstrained case (see Section 3) can be
replaced by the condition "xo,c ER(Pc T*)" in the constrained case, where
Pc is the metric projector onto C, to yield the same result.

Let Ry E T( C); we define

(4.1 )

and

(4.2)

LEMMA 4.1. Let Nand U be as above. Then Nand U are closed and
convex. If U # 0, then there exists a unique element ii ofminimal norm in U.
Moreover, T* U c N.

Proof Let N # 0, which is equivalent to xo,c EPdN( T).l), and let (xn)
be an arbitrary sequence in N such that Xn-+ X E N(T).l for n -+ 00. Since

X EN<=> X EN(T).l and (xo,c- x, h - xo,d ~°for all hE C (4.3)

holds, we obtain °~ (xo,c - xn> h - xo,d -+ n~ 00 (xo,c - x, h - xo,d for all
hE C, and hence (xo,c - x, h - xo,d ~°for all hE C. Again (4.3) implies
that x EN. Therefore, N is closed,

Let now x I' X 2 EN and AE [0, 1]; it follows with (4.3) that

(xo,c- (Ax l + (I-A) x2), h-xo,d

= A (xo,C-XI> h-xo,d+ (i-A) (XO,C-X2' h-xo,d~O
;0 - ;0 -- --;;- - ~---
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for all hE C, and hence with (4.3) that (Ax l + (1-.le) x 2 ) EN. Therefore, N
is convex. One proves analogously that U is closed and convex, using

UE U¢:>uER(T) and (xo,c- T*u, h-xo,cr~O for all hEC (4.4)

instead of (4.3). If U -# 0, the existence and uniqueness of an element
ii of minimal norm in U follow from the convexity of the closed set U.
T* U c N follows immediately from the definitions of Nand U, since
R(T*) c N(T).1. I

Now we can prove our first result about convergence rates:

THEOREM 4.2. Let Ry E T( C).

then Ilx".c - xO,c11 = O((J(1/2) and
addition Qy = Ry we even obtain

II T(x",c - xo,dll = O((J()

(a) If Xo,c E R(PcT*),
II T(x",c - xo,dll = O((J(). If In

Ilx",c - xo,c11 = O((J(1/2).

(b) Let Qy = Ry;
xo,cE R(PcT*).

implies that

Proof (a) It follows with (2.7) (with h=xo,d, (2.3) (with u=Tx",d,
(2.8), and (4.4) (with h=x",d that

(T* Tx",c + (J(x<x,c - T*y, xO,c - x",c) ~ 0

(T*y - T* Txo,c, xo,c - x<x,c») ~ 0 +

(J((T*ii - xo,c, xo,c - x<x,c) ~ 0

(( T* T + (J(I)(x<X,c -- xo,c) + (J(T*ii, xo,c - x<X,c) ~ 0,

where ii E U is the unique element of minimal norm in U (see Lemma 4.1).
The last inequality implies that

II T(x<X,c - xo,c)ll2 + (J( Ilx<x,c - xo,c11 2~ (J((ii, T(xo,c - x<X,c))

~(J( lIull·IIT(x",c-xo,dll. (4.5)

It follows immediately from (4.5) that

II T(x<X,c - xo,dll ~ (J( Iliill

and

(4.6)

(4.7)

hold. Let now Qy = Ry. Estimate (4.6) implies that II T(x",c - xo,d/(J(II ~
Iliill. Let ((J(n > 0) be an arbitrary sequence with (J(n -+ 0 for n -+ 00. Then
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there exist a subsequence (again denoted by (an) and an element go E R(T)
such that Ilgoll :::; Ilull and T(xo,c - x".,dlan -». go for n -+ 00. Together with
(2.7), Ry=Qy, and (2.8), which imply that T*y=T*Ry=T*Txo,e, we
obtain

(
* T(xo,c - X".,d) *)0:::; x" e-T ,h-x" c ------+ (xoc- T go,h-xocn, Cl.

n
n. n - 00' ,

for all hE C and hence (xo,e - T*go, h - xo,d ~ 0 for all hE C. Now (4.4)
implies that go E U. IIgoll:::; I\ull and the uniqueness of u imply that go = ii.
Therefore, we have shown

T(xoc-x"d _, '-».u
a

for a -+ O. (4.8)

With (4.6) and (4.8) we get

IIul1 2 = !i~ I(ii, T(xo,c
a
- X",d) I

:::; Ilull·li~~f II T(xo,ca-x",dll

:::; Iliill ' li~~~p \\ T(xo,ea- x",d \1 :::; Iliil\ 2

and hence lim,,~o IIT(xo,c-x",e)/all = Iluli. Together with (4,8) this implies

T(xoc-x"d _
, '-+ u

a
for a -+ O. (4.9)

Rewriting (4.5) we get

a Ilx",e-xo,c112:::;a(ii, T(xo,c-x",c))-IIT(xo,c-x",d\l2

and hence

:::; llii- T(Xo,ca-x",dll·IIT(Xo,c_x",dll.

With (4.6) and (4.9) this implies that Ilx",c- xo,cl\ = o(a 1
/
2

).

(b) If IIT(x",c-xo,dll =O(a), then there exists a constant y>O such
that IIT(x",c-xo,dlall :::;y, Now it follows analogously to (a) that an
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arbitrary sequence (O(n > 0) with O(n -+ 0 for n -+ 00 has a subsequence (again
denoted by (O(n)) such that T(xO.c-x"n.d/O(n~goEU for n-+oo, i.e.,
PcT*go = xo.c , so that xo.cER(PcT*). I

Remark 4.3. If the operator T is injective and Qy = Ry, which implies
that xo,c = Xo= Tty, then the condition "xo,c = XoE R(Pc T*)" for the
convergence rate 0(0(1/2) in the constrained case is weaker than the
condition "xo E R( T*)" in the unconstrained case, since there exist
examples (see, e,g" [7, Example3.4]) where xorf-R(T*), Ilx,,-xoll-#
0(0(1/2), but xo,c=xoER(PcT*), which implies (see Theorem4,2) that
Ilx",c - xoll = 0(0(1/2). This means that in this case the constrained
Tikhonov-regularized solution converges faster than the unconstrained
Tikhonov-regularized solution. Obviously, the converse implication
"xoER(T*)=XoER(PcT*)" always holds, if xoEC.

It is also possible to show that the condition "xo E R((T*Tn (v < !)" for
the convergence rate o(O(V) in the unconstrained case (see Section 3) can be
replaced by an analogous condition for x o.c in the constrained case (see
[7, pp. 32-39]).

5, CONDITIONS FOR THE RATE O( O() IN THE CONSTRAINED CASE

In this section we summarize the most important results of [7]. Since
the proofs of these results are rather involved, they will be omitted here; for
the proofs see [7].

The first result in this section shows that we can use the results about
convergence rates of the unconstrained case, if X oc E C (which is not. ,

surprising):

PROPOSITION 5.1. Let Ry E T( C) and xo,c E C. Then xo,c = Xo and
x" c = x" for 0( > 0 sufficiently small.

Proof See [7, Proposition 4.1]. I
In the following we suppose that xo,c E BC, which holds, e.g., if xo,c -# Xo

or Qy-#Ry.
In the unconstrained case, 0(0() is (except for trivial cases, cf. Section 3)

the best possible convergence rate, This also holds in the constrained case
(at least if Ry = Qy):

THEOREM 5,2. Let Ry = Qy E T( C) and Ilx",c - xo,c11 = 0(0(); then
X",C=XO,c=X c for all iX>O, where Xc is the unique element of minimal
norm in C.

Proof See [7, Theorem 4.2]. I
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We have seen in Section 4 that the condition "XoE R(T*)" for the
convergence rate 0(1X 1/

2
) in the unconstrained case can be replaced by the

condition "xo,c E R(Pc T*)" in the constrained case to yield the same result
The condition "xoER(T*T)" for the convergence rate O(IX) in the
unconstrained case cannot just be replaced by "xo,c E R(Pc T*T)" as one
would expect (for an example where xo,c E R(Pc T* T), but Ilx",c - xo,c11 #
O(IX), see [7, Example 4.10]). Nevertheless, the next theorem shows that
this condition is necessary for the convergence rate O(IX), if Qy = Ry.

THEOREM 5.3. Let Qy = Ry E T(C), x o£ E ac, xO,c #- Xc, and
Ilx",c- xo,c11 = O(IX). Then V#-0 and UE R(TP) holds, where V is defined
by (4.2) and P is the orthogonal projector onto L:= {h E X/(fo, h) } = 0,
where

if xO,c #- T*u

if Xo,C = T*u.

Hence xO,c E R(Pc T*TP). Especially, xo,c E R(Pc T*T).

Proof See [7, Theorem 4.5]. I
We have seen in Remark 4.3 that, if T is injective and X oE C, the

constrained Tikhonov-regularized solutions always converge with the rate
0(1X

1
/
2

), if the unconstrained Tikhonov regularized solutions converge with
this rate. An analogous assertion does not hold for the rate O( IX), even if T
is injective and Xo E C, because it is on the one hand possible that only the
unconstrained Tikhonov-regularized solutions converge with the rate O(IX),
and on the other hand it is possible that only the constrained Tikhonov
regularized solutions converge with the rate O(IX) (see [7, Example 4.7]).

If ac can be described by a linear manifold in a neighbourhood of xo,c,
we can use the convergence results from the "unconstrained theory" (see
Section 3) to obtain the following result:

THEOREM 5.4. Let Ry E T( C) and Xo,c E ac. Let V be a linear subspace
of X, Z E V-l, and e> 0 such that (z + V) n V e (xo,d = ac n V e (xo,d, where
V e (xo,d:= {xEX/llx-xo,c11 <e}. For IX>O sufficiently small let x",cEac.
Then

PX",c=(PT*TP+IXI)-1 PT*TPxo,c and P(X",c - xo,c) = x",c - xo,c

for IX> 0 sufficiently small, where P is the orthogonal projector onto V.
Moreover, PXo,cER(PT*TP) is equivalent to Ilx",c-xo,c11 =O(IX).

Proof See [7, Theorem 4.8]. I

640/53/3-6
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Theorem 5.4 shows that, if L is a hyperplane and X".L are the constrained
regularized solutions in this hyperplane, we can use the results of Section 3
to obtain results about convergence rates. Therefore, we now establish
conditions under which the inequality

Ilx".c - x o.c11 ~ c ·llx".L - xo.cll (5.1 )

holds for some c>O, where L:={hEX/(T*(Ry-Qy),h-xo.d=O},
if Qy # Ry, and L:= {h E X/(xo.c - T*u, h - xo.d =O}, if Qy = Ry,
Xo.cER(PcT*), and xo.c# T*u (see [7, Lemma 4.16]). The main effort in
the proofs of the results in this section is contained in the derivation of
sufficient conditions for (5.1) to hold. Using (5.1) and Theorem 5.4 one can
obtain the convergence rate O(IX) for a larger class of convex sets C. For
the (lengthy) details see [7, Lemmata 4.12-4.16].

For XE oC let S(x) := {IE X/(f, h - x) ~ 0 for all hE C and 11/11 = 1} be
the subgradient of oC in x; and let

!
T*(Ry- Qy)

10:= II T*(RYT-*qy) II
x o.c - u

IIxo.c - T*ull

if Ry#Qy

if Ry = Qy, x o.c E R(Pc T*), and x o.c # T*u;

and x".c # x o.c for all IX> O. Moreover, let either Ry # Qy or Ry = Qy,
xo.cER(PcT*) and xo.c#T*u. Then the sufficient conditions for (5.1)
read as follows:

for all sequences (xn), Un),

and

"There exist constants c > 0 and e> 0 such that

IUn-/o,xo.c-xn)l,-
-----'----;:/ C

Il/n -loll . Ilxo.c- xnll
with Xn ...... n~ 00 Xo.c, x o.c # XnE oC n V. (xo.d, and
In ...... n~ 00/0'/0 olin E S(xn)"

"There exist constants c > 0 and e > 0 such that

(5.2)

for all sequences (xn), Un), (5.3)

with Xn ...... n~ 00 xo.c. Xo.c # XnE oC n VB (xo.c), and
In ...... n~ 00/0'/0 olin E S(xn),"

respectively. Since (In, Xo.c - Xn)~ 0 and Uo, Xn - xo.d ~ 0 (note that
In E S(xn) and 10 E S(xo.d), Un-/o,xo.c-xn) =Un,XO.c-xn) +
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in the case (i)

in the cases (ii), (iii), (iv).

(fo, Xn - xo.d ~ (fn, Xo.c - Xn)~ 0; hence !Un - fo, xo,c- x n)! = Un - fo'
Xo.c - x n)~ Un' Xo.c - Xn) = IUn' Xo,c - xn)l· This implies that

(5.3 )~ (5.2).

If C is twice continuously Frechet-differentiable in a neighborhood of xo,c,
then there exists a very simple condition which implies (5.3).

LEMMA 5.5. Let Ry E T( C) and let ac be twice continuously Frechet
differentiable in a neighbourhood of Xo. c , i.e., there exist B > 0, c > 0, and a
functional F: VB (xo,d -+ IR such that ac (\ VB (xo,d = {x E VB (xo.d/
F(x) = c} and F is twice continuously Frechet-differentiable. If F"(xo,d is
positive definite, then the conditions (5.2) and (5.3) hold. (By F"(xo.c ) is
positive definite we mean that there exists a constant y >° such that
F"(xo.d(z, z)~y IIzl1 2 for all ZEX.)

Proof See [7, Lemma 4.18]. I
Now we obtain the main result of this section.

THEOREM 5.6. Let Ry E T( C) and let one of the following four conditions
be fulfilled.

(i) Ry #- Qy, xo.c E N(T).L, and QYE R(T) l
(ii) Ry = Qy, xo,c # xo, and xO,c E R(Pc T*) and C fulfills

(iii) Ry= Qy, xo,c=xoER(PcT*), x o.c # T*u, condition (5.2)
andfoER(T*T)

(iv) Ry=Qy, xo.c=xoER(PcT*), xo,c#T*u, andfo¢R(T*T) and
C fulfills condition (5.3).

(If the conditions of Lemma 5.5 are fulfilled, (5.2) and (5.3) hold.) Let P be
the orthogonal projector onto l := {h E X/Uo, h) = O}, where

!
T*(Ry-Qy)

II T*(Ry - Qy) II
fo=

Xo.c - T*u

IIxo,c- T*ull

Then PXo.c E R(PT* TP) implies that

IIx",.c - xo.cll = O( IX).

Proof See [7, Theorem 4.19].

If we do not know the data y exactly, but elements Yb E Y such that
IIQ(y - Yb)ll ~ b, then we can obtain results about convergence rates in
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dependence on b analogously to the unconstrained case (see Section 3),
using Theorem 2.5, Theorem 4.2, Theorem 5.4, and Theorem 5.6 (see [7,
Theorem 4.20] ).

Note that in this paper we treat the infinite-dimensional theory of
constrained regularization. For numerial computations one has to
approximate the problem of solving (2.6) by a sequence of finite-dimen
sional problems. For this and numerical results see [8].
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